Composition
Initial atmospheric makeup is generally related to the chemistry and temperature of the local solar nebula during planetary formation and the subsequent escape of interior gases. These original atmospheres underwent much evolution over time, with the varying properties of each planet resulting in very different outcomes.
The atmospheres of the planets Venus and Mars are primarily composed of carbon dioxide, with small quantities of nitrogen, argon, oxygen and traces of other gases.
The atmospheric composition on Earth is largely governed by the by-products of the very life that it sustains. Earth's atmosphere contains roughly (by molar content/volume) 78.08% nitrogen, 20.95% oxygen, a variable amount (average around 1.247%, National Center for Atmospheric Research) water vapor, 0.93% argon, 0.038% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases.
The low temperatures and higher gravity of the gas giants — Jupiter, Saturn, Uranus and Neptune — allows them to more readily retain gases with low molecular masses. These planets have hydrogen-helium atmospheres, with trace amounts of more complex compounds.
Two satellites of the outer planets possess non-negligible atmospheres: Titan, a moon of Saturn, and Triton, a moon of Neptune, which are mainlynitrogen. Pluto, in the nearer part of its orbit, has an atmosphere of nitrogen and methane similar to Triton's, but these gases are frozen when farther from the Sun.
Other bodies within the Solar System have extremely thin atmospheres not in equilibrium. These include the Moon (sodium gas), Mercury (sodium gas), Europa (oxygen), Io (sulfur), and Enceladus(water vapor).
The atmospheric composition of an extra-solar planet was first determined using the Hubble Space Telescope. Planet HD 209458b is a gas giant with a close orbit around a star in the constellationPegasus. The atmosphere is heated to temperatures over 1,000 K, and is steadily escaping into space. Hydrogen, oxygen, carbon and sulfur have been detected in the planet's inflated atmosphere.[5]
[edit]Structure
[edit]Earth
Main article: Earth's atmosphere
The Earth's atmosphere consists, from the ground up, of the troposphere (which includes the planetary boundary layer or peplosphere as lowest layer), stratosphere (which includes the ozone layer),mesosphere, thermosphere (which contains the ionosphere), exosphere and also the magnetosphere. Each of the layers has a different lapse rate, defining the rate of change in temperature with height.
Three quarters of the atmosphere lies within the troposphere, and the depth of this layer varies between 17 km at the equator and 7 km at the poles. The ozone layer, which absorbs ultraviolet energy from the Sun, is located primarily in the stratosphere, at altitudes of 15 to 35 km. The Kármán line, located within the thermosphere at an altitude of 100 km, is commonly used to define the boundary between the Earth's atmosphere and outer space. However, the exosphere can extend from 500 up to 10,000 km above the surface, where it interacts with the planet's magnetosphere.
[edit]Others
Other astronomical bodies such as these listed have known atmospheres.
[edit]In the Solar System
- Atmosphere of Mercury
- Atmosphere of Venus
- Atmosphere of Earth
- Atmosphere of Mars
- Atmosphere of Jupiter
- Atmosphere of Saturn
- Atmosphere of Uranus
- Atmosphere of Neptune
- Atmosphere of Pluto
[edit]Outside the Solar System
- Atmosphere of HD 209458 b